Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE

Academic Year 2019-20

Program:	Mechanical Engineering
Semester :	3
Course Code:	17MEL37A
Course Title:	Material Testing Lab
Credit / L-T-P:	2/ 1-2-0
Total Contact Hours:	32 Hrs
Course Plan Author:	Mr. Paramesha M

Academic Evaluation and Monitoring Cell

No. 29, Chimney hills, Hesaraghatta Road, Chikkabanavara BANGALORE-560090, KARNATAKA, INDIA Phone / Fax :+91-08023721315/23721477, Web: www.skit.org.in

INSTRUCTIONS TO TEACHERS

• Classroom / Lab activity shall be started after taking attendance.

• Attendance shall only be signed in the classroom by students.

17MEL37A/3

- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

18ME37A: Material Testing Lab	. 4
A. LABORATORY INFORMATION	4
1. Laboratory Overview	

2. Laboratory Content	••••	4
3. Laboratory Material	••••	4
4. Laboratory Prerequisites:	••••	5
4. Lab Prerequisites:	••••	5
5. Content for Placement, Profession, HE and GATE	••••	5
B. Laboratory Instructions	5	
1. General Instructions		5
2. Laboratory Specific Instructions		5
C. OBE PARAMETERS	6	
1. Laboratory Outcomes		6
2. Laboratory Applications		7
3. Mapping And Justification		7
4. Articulation Matrix		7
5. Curricular Gap and Experiments		8
6. Experiments Beyond Syllabus		8
D. COURSE ASSESSMENT	8	
1. Laboratory Coverage		8
2. Continuous Internal Assessment (CIA)		9
E. EXPERIMENTS	9	
D. EXPERIMENTS	9	
Experiment 01 · Metallurgical microscope	-	9
Metallurgical microscope		9
Experiment 02 : Heat treatment	1	0
Experiment 03 : Non-destructive test (magnetic – crack detector)	1	1
Experiment 3.1 : Non-destructive test (ultrasonic flaw detector)	1	2
Experiment 04 : hardness test (brinell hardness test)	1	3
Experiment 4.1: hardness test (Rockwell hardness test)	1	4
Rockwell hardness test	1	4
Experiment 05 : tensile test	1	5
Tensile test	1	5
To conduct tensile test in ductile material and to determine the following; i) Ultimate tensile		
stress (UTS) ii) Yield stress (YS) iii) Breaking stress iv) % Elongation v) Youngs modulus (E)		
vi) % Reduction in area	1	5
Experiment 6.1 : compression strength test	1	7
Compression strength test	1	7
Experiment 6.2: Bending test	1	.8
Bending test	1	.8
Experiment 07 : shear strength test	1	.9
Shear strength test	1	.9
Experiment 0/ : Torsion test	2	20
Iorsion test	2	20
Experiment 0/ : Impact test(Charpy test)	2	
Experiment 07 : Impact test(Izod test)	2	1
Experiment 0/ : Impact test(izod test)	2	22
Experiment 07 : wear studies	2 a	22
Experiment 07 . wear studies	Z	,5)2
	∠	.)

Note : Remove "Table of Content" before including in CP Book Each Laboratory Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

18ME37A: Material Testing Lab

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	BE	Program:	ME
Year / Semester :	2 / III	Academic Year:	2019-20
Course Title:	Material testing Lab	Course Code:	18MEL37A
Credit / L-T-P:	2/1-2-0	SEE Duration:	180 Minutes
Total Contact Hours:	32 Hrs	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	Practical record
Lab. Plan Author:	Mr. Paramesha M	Sign	Dt :
Checked By:	ShankareGowda K C	Sign	Dt :

2. Laboratory Content

Expt.	Title of the Experiments	Lab	Concept	Blooms
		Hours		Level
1	Metallographic examination of plain carbon steel, tool steel, gray cast iron,	03	Microstructure	L2
	brass, bronze			
2	Heat treatment like annealing, normalizing, Harding and tempering of steel	03	Improvement	L3
			of properties	
3	Hardness test like Brinnel, Rockwell, Vickers hardness	06	Resistance of	L3
			material	
4	Ultrasonic flaw detection, magnetic crack detection	03	NDT	L3
5	Using U T M conduct tensile test, shear and compression test.	06	Material	L3
			behavior	
6	Impact test for mild steel and CI specimen	04	strength	L3
7	Torsion test on steel bar	03	torsional	L3
			strength	
8	Wear characteristics of ferrous and non ferrous materials under different	04	wear	L3
	parameters			

3. Laboratory Material

 Books & other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

 Expt.
 Details

 Expt. in
 Availability

LAPt.	Dotails	Expt. III	Trundonity
		book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1	Smith, foundations of materials science engineering ,4 th edition,McGraw Hill 2009		In Lib
2	Willam D Callister material science engineering and introductin Wiley 2006	-	In Lib
В	References books(Title, Authors, Edition, Publisher, Year.)		
1	Donald R Askland and pradeep p phule the science and engineering of materials	-	In Lib / In dept
	,cengage learing 4 th Ed 2003		
С	Concept Videos or Simulation for UnderstandingNptel		
	https://www.youtube.com/watch?v=NpS9QEOVGRA -2:31 Mins		
	https://www.youtube.com/watch?v=wEDumU8dHg0 -5:39 mins		
	https://www.youtube.com/watch?v=NIWVmp_q_XE -3:35		
	https://www.youtube.com/watch?v=XSPWWpcZYS0 -3:19		
D	Software Tools for Design	-	-
Е	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	vw.nptel.ac.in		

4. Laboratory Prerequisites:

4. Lab Prerequisites:

Base Course: -	-
----------------	---

SNo	Course Code	Course Name	Topic / Description	Sem	Remarks
1					

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Expt.	Topic / Description	Area	Remarks	Blooms Level
1				

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks
1	Students must always wear uniform and shoes before entering the lab.	
2	Enter the lab on time and do not leave the lab without the permission of teaching staff	
3	Before you turn on a switch, think of the consequences	
3	Check for the electrical connections and inform if any discrepancy found to the	
	attention of lecturer/lab instructor.	
4	perform the experiment under the supervision/guidance of a lecturer/lab	
	instructor only	
5	After the observations are noted down switch off the electrical connections.	
6	In case of fire use fire extinguisher/throw the sand provided in the lab.	
7	In case of any physical injuries or emergencies use first aid box provided.	
SNo	Instructions	Remarks
1	Students must always wear uniform and shoes before entering the lab.	
2	Enter the lab on time and do not leave the lab without the permission of teaching staff	
3	Before you turn on a switch, think of the consequences	

2. Laboratory Specific Instructions

SNo	Specific Instructions	Remarks
1	Do not operate any experimental setup to its maximum value	
2	Do not touch/ handle the experimental setups/Test Rigs without their	
	prior knowledge,	
3	Never overcrowd the experimental setup/Test Rig, Leave sufficient space for the	
	person to operate the equipments	
	Note down the specifications of the experimental setup before	
	performing the experiment.	
4	Never rest your hands on the equipment or on the display board, because it has fragile	
	measurement devices like thermometers, manometers, etc	
5	Any unsafe conditions prevailing in the lab can be brought to the notice	
	of the lab in charge	

C. OBE PARAMETERS

1. Laboratory Outcomes

#	Lab	COs	Teach. Hours	Concept	Instr Method	Assessment	Blooms'
	Code #					Method	Level

-	-	At the end of the experiment, the student should be able to 	-	-	-	-	-
1	18MEL	Understand the micro structure	03	Micro	Chalk &	Practical record +	L2
	37A.1	of materials		structure	board,	IA+Viva -voice	
					Demonstrate		
2	18MEL	Improve the material	03	Heat	Chalk &	Practical record +	L3
	37A.2	properties		treatment	board,	IA+Viva -voice	
					Demonstrate		
3	18MEL	Analyze the material	06	hardness	Chalk &	Practical record +	L3
	37A.3				board,	IA	
					Demonstrate		
4	18MEL	Explore the difference NDT	03	NDT	Chalk &	Practical record +	L3
	37A.4	method			board,	IA+Viva -voice	
					Demonstrate		
5	18MEL	Predict the material behavior	06	Mechanica	Chalk &	Practical record +	L3
	37A.5			1 behavior	board,	IA+Viva -voice	
					Demonstrate		
6	18MEL	Access the strength of material	04	strength	Chalk &	Practical record +	L3
	37A.6				board,	IA+Viva -voice	
					Demonstrate		
7	18MEL	Predict the material behavior	03	Rotational	Chalk &	Practical record +	L3
	37A.7			force	board,	IA+Viva -voice	
					Demonstrate		
8	18MEL	The predict wear rate of	04	wear	Chalk &	Practical record +	L3
	37A.8	different material			board,	IA+Viva -voice	
					Demonstrate		
-		Total	32	-	-	-	-

2. Laboratory Applications

SNo	Application Area	CO	Level
1	A Metallurgical microscope is essentially utilized in the industries to watch flat and glossy	CO1	L2
	metals and other area like Archaeometallurgy, Gemology Forensic Metallurgy, Mineralogy		
2	Heat treatment are useful to improve the mechanical properties	CO2	L3
3	Rockwell, Brinell, and Vickers for measuring the metal hardness	CO3	L3
4	NDT methods is to find discontinuities in the material	CO4	L3
5	Universal testing machine is designed for testing the material under tension compression and	CO5	L3
	bending		
6	determining the amount of forces that are absorbed by materials when it reaches the point of	CO6	L3
	fracture.		
7	To determine the behavior a material	CO7	L3
8	Wear test is commonly used as a simple measure of workability of material in service.	CO8	L3
NT / T			

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Expt	pt Mapping Ma		Mapping Mapping Justification				
			Level				
	CO PO -		-	'Area': 'Competency' and 'Knowledge' for specified			
				'Accomplishment'			
	CO1	PO1	L2	Knowledge is required to Understand the micro structure of Engineering			
				materials			
	CO2	PO1	L3	Knowledge is required to Understand the heat treatment methods			
	CO2	PO4	L3	Analyzing is required to behavior on materials at different temperature			
	CO3	PO1	L3	Knowledge is required to Understand the hardness of the material			
	CO4	PO1	L3	Knowledge is required to Understand the different type of NDT Methods			
	CO4	PO5	L3	Analyzing is required to Different modern technique are used to find out			

Copyright ©2017. cAAS. All rights reserved.

			the defects	
CO5	PO1	L3	Knowledge is required to Understand behavior of Engineering materials	
CO5	PO9	L3	Knowledge is required to Experiments conduct by group member to find	
			out different behavior of the materials	
CO6	PO1	L3	Knowledge is required to Understand the behavior of Engineering	
			materials	
CO6	PO9	L3	Knowledge is required to Understand Experiments conduct by group	
			member to find out different behavior of the materials	
CO7	PO1	L3	Knowledge is required to Understand the behavior of Engineering	
			materials	
CO7	PO9	L3	Knowledge is required to Experiments conduct by group member to find	
			out different behavior of the materials	
CO8	PO1	L3	Knowledge is required toUnderstand the knowledge of behavior of	
			Engineering materials	
CO8	PO9	L3	Knowledge is required to Experiments conduct by individual or group	
			member to find out losses of material	

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	Course Outcomes					Prog	ram (Outco	omes					
#	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	Level
											0	1	2	
1	Understand the micro structure of	3												L2
	materials													
2	Improve the material properties	3			2									L3
3	Analyze the material	3												L3
4	Explore the difference NDT method	3				2								L3
5	Predict the material behavior	3								2				L3
6	Access the strength of material	3								2				L3
7	Predict the material behavior	3								2				L3
8	The predict wear rate of different	3								2				L3
	material the material behavior													
CS501PC.	Average	3			1	1				1.2				

5. Curricular Gap and Experiments

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					

Note: Write Gap topics from A.4 and add others also.

6. Experiments Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Unit	Title	Teachin	in No. of question in Exam				CO	Levels			
		g Hours	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
1	Metallographic examination of plain	03	1	-	-	-	-	-	1	CO1	L2
	carbon steel, tool steel, gray cast iron,										

LABORATORY PLAN - CAY 2019-20

	brass, bronze										
2	Heat treatment like annealing,	03	1	-	-	-	-	-	1	CO2	L3
	normalizing, Harding and tempering of										
	steel										
3	Hardness test like Brinnel, Rockwell,	06	1	-	-	-	-	-	1	CO3	L3
	Vickers hardness										
4	Ultrasonic flaw detection, magnetic	03	-	1	-	-	-	-	1	CO4	
	crack detection										
	Using U T M conduct tensile test, shear	06	-	1	-	-	-	-	1	CO5	L3
	and compression test.										
6	Impact test for mild steel and CI	04	-	-	1	-	-	-	1	CO6	L3
	specimen										
7	Torsion test on steel bar	03	-	-	1	-	-	-	1	CO7	L3
8	Wear characteristics of ferrous and non	04	-	-	1	-	-	-	1	CO8	L3
	ferrous materials under different										
	parameters										
-	Total	32	3	2	3				8	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	30	C01,C0,C03,C04,C05,C0	L2,L3
		6,CO7,CO8	
CIA Exam – 2	30	C01,C0,C03,C04,C05,C0	L2,L3
		6,CO7,CO8	
CIA Exam – 3			
Assignment - 1	10		
Other Activities – define – IA		CO1 to Co8	L2, L3,
Final CIA Marks	40	-	-

SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	10 Marks
2	Record Writing	10 Marks
3	Internal Exam Assessment	20 Marks
4	Internal Assessment	40Marks
5	SEE	60 Marks
-	Total	100 Marks

E. EXPERIMENTS

Experiment 1 : Metallurgical Microscope

-	Experiment No.:	1	Marks		Date		Date			
					Planned		Conducted			
1	Title	Me	Aetallurgical microscope							
2	Course Outcomes	Und	lerstand the mi	cro structure o	f materials					
3	Aim	Prep	paration of s	pecimen for	Metallographi	c examination	n of differen	t engineering		
		mat	erials To repo	rt micro struct	ures of plain o	carbon steel, to	ool steel, gray	C.I, SG iron,		
		Bras	ss, Bronze & c	omposites						
4	Material / Equipment	0	Metallurg	gical microscop	e (magnificat	ion at least up	to 500X)			
	Required	0	Polishin	g and grinding	machine.					
		0	Specimer	ıs						
5	Theory, Formula,	mic	ro structure							
	Principle, Concept									
6	Procedure, Program,	Foll	owing are the	steps involved	in the preparat	tion of specime	en :			
	Activity, Algorithm,	0	Step 1:P	repare the spec	imen.					
	Pseudo Code	0	Step 2: N	fount the speci	men on the tab	le of metallur	gical microsco	pe. Record the		
		objective magnification and eye piece magnification and determine total magnification.								
		0	D step 3: Focus the surface of polished and etched specimen using coarse							
		adju	stment and the	en fine adjustm	ent					

LABORATORY PLAN - CAY 2019-20

		• step 4:Observe the micro structure and record it.
		step 5:Compare the micro structure with the standard
		• step 6: the same procedure is repeated for other specimens
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table,	0
	Look-up Table, Output	0
9	Sample Calculations	0
		0
		0
10	Graphs, Outputs	0
		0
11	Results & Analysis	
12	Application Areas	• A Metallurgical microscope is essentially utilized in the industries to watch flat
		and glossy metals and other area like Archaeometallurgy, Gemology Forensic Metallurgy,
		Mineralogy
13	Remarks	
14	Faculty Signature with	
	Date	

Experiment 2 : Heat Treatment

-	Experiment No.:	1	Marks		Date		Date			
					Planned		Conducted			
1	Title	Heat t	reatment							
2	Course Outcomes	Impro	prove the material properties							
3	Aim	To fin	d the effect o	f heat treatme	nt (annealing,	normalizing &	k hardening &	tempering of		
		mediu	m carbon & al	loy steel) by n	neasurement of	hardness.				
4	Material / Equipment	t 🛈	Muffle furn	ace with on-of	f controller &	temp.				
	Required	0	indicator- temp up to 1000 0 C Oil quenching tub,							
		0	water quenching tub & fan.							
		0	Tongs, safe	ly gloves & go	ggles Rockwe	ll hardness test	er			
5	Theory, Formula	Heat	treatment of s	teel is a proce	ess of heating	and cooling i	n the solid st	ate to achieve		
	Principle, Concept	desire	d mechanical	properties. Th	nis involves he	eating the stee	el to a specifio	c temperature,		
		soakir	ig it for a certa	in period & th	en cooling it a	t a suitable rate	e. The differen	t types of heat		
		treatm	ent process	_						
		in this	experiment co	overed are proc	cess annealing	to soften the si	teel by heating	below critical		
		temp.	(650-700 0	C) & air coo	ling; hardenin	g for increasi	ng hardness	& mechanical		
_		proper	ties by heating	g above upper	critical temp (8	30-860 0 C) a	nd quenching	n oil/ water.		
6	Procedure, Program	,Meası	ire the Rockwe	ell hardness of	steel specimer	as follows:				
	Activity, Algorithm	, W	Step 1: Plac	the semi pol	ished specime	n on the platfor	rm.			
	Pseudo Code	•	Step 2: Inse	ert the diamon	d cone indento	r for C scale δ	z 1/16 "steel b	all for B scale		
		mside	the sleeve & t	ignten the scre	w. Check that $(150 \log f)$	there is no move $C = 10^{\circ}$	Vement of inde	ntor.		
		W the len	step 5: Set	the required is	oad (150kg 10	r C scale & I	JOKg for B sca	ile) by turning		
			Stop 4: Pr	y the side of the	e macinite.	ot with indept	or hy rotating	the elevating		
		e scrow	by rotating the	ng the specifi a star handla. F	Ry further elev	ating the speci	or by foldling	ar load of 10kg		
		is ann	lied such that	nointer indica	σ' on the	smaller gradu	nted, arc scale	x & the longer		
		nointe	r indicates on	the outer C sca	1e & 'B 30' on	the inner 'B'	scale	a the longer		
		n D	Step 5: No	w turn the lev	ver away from	the observer	slowly The	longer pointer		
		moves	away & whe	en it comes to	rest, wait 8 t	o 10 seconds	for the entire	application of		
		maior	load.					-FF		
		O	Step 6: No	ow turn the le	ever slowly to	o-words the o	bserver i.e., t	o the original		
		positio	on. Now the en	tire load is bei	ng off from the	e specimen.	,	U		
		0	Step 7: Now the longer pointer moves back and when it comes to a rest position.							
		note tl	ne reading on t	he outer black	dial (C scale)	& on the inner	r red dial (B sc	ale).		
		0	Step 8: The	e reading on th	he 3 trial read	ings are taken	at separate lo	cations on the		
		surfac	e of the specin	nen. The avera	age value of th	ese three readi	ings gives the	true Rockwell		

		hardn B scal	ess number w le respectively	hich is rep	ported as HRC & HRB	for Rockwel	l in C scale & Roc	kwell in
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	Sl. No	Material	Temp 0 C	Cooling / Quenching Medium	Hardness	RHN	Re mar ks
						Before heat treatment	After heat treatment	
8	Observation Table,				1	1	I	I
	Look-up Table,							
	Output							
9	Sample Calculations							
10	Graphs, Outputs							
11	Results & Analysis							
12	Application Areas	Heat t	reatment are u	useful to in	mprove the mechanical	properties		
13	Remarks							
14	Faculty Signature with Date							

Experiment 3 : Non-Destructive Test (Magnetic – Crack Detector)

-	Experiment No.:	1	Marks		Date		Date				
					Planned		Conducted				
1	Title	Magn	Iagnetic crack detector								
2	Course Outcomes	Explo	re the difference	ce NDT metho	d						
3	Aim	To det	detect the surface or subsurface crack of the given ferromagnetic material								
4	Material / Equipment	Magn	etic field gener	ator, and ferro	magnetic powe	der.					
	Required										
5	Theory, Formula,	0	When a piece of metal is placed in a magnetic field and the lines of magnetic flux								
	Principle, Concept	get in	tersected by a	discontinuity,	such as a crac	ck or slag incl	usion in a cas	ting, magnetic			
		poles	are induced on	either side of	the discontinu	ity. A surface c	rack is indicat	ed by a line of			
		fine p	articles followi	ng the crack o	outline and a su	bsurface defec	t by a fuzzy co	ollection of the			
		magne	etic particles of	n the surface n	ear the discont	inuity					
6	Procedure, Program,	Clean	the surface of	the test specin	nen to remove	scales, oils and	l grease.				
	Activity, Algorithm,	0	Step 1: App	ly a thin layer	of ferromagne	tic particle ove	er the surface to	o be tested.			
	Pseudo Code	0	Step 2:Mag	netize the test	piece.	_					
		0	Step 3:Obs	erve the shape	and size of the	e magnetic par	ticles collected	d, which is the			
		shape	and size of the	defect							
7	Block, Circuit, Model			MAGNETIC FLUS	LINES	MAGNETIC FLUX LI	N25				
	Diagram, Reaction			<u></u>	- 1	CRACK	1				
	Equation, Expected			/	₹// _	1 27 4					
	Graph		E		- E		4				
8	Observation Table			ST# DEFECTS		@BIKCT)					
0	Look-up Table										
	Output										
9	Sample Calculations										
10	Graphs, Outputs										
11	Results & Analysis										
12	Application Areas	NDT	methods is to	find discontin	uities in the ma	aterial					
13	Remarks										
14	Faculty Signature										
	with Date										

Experiment 3.1 : Non-Destructive Test (Ultrasonic Flaw Detector)

-	Experiment No.:	1	Marks		Date Planned		Date Conducted				
1	Title	Ultras	onic flaw dete	ctor	Tainicu		Conducted				
2	Course Outcomes	Explo	re the different	ce NDT metho	d						
3	Aim	To stu	dy the ultraso	nic flow detec	tor and to dete	ermine the loc	ation of the in	terior crack or			
-		cavity	avity in the given specimen.								
4	Material / Equipment	Ultras	onic flow dete	ctor							
	Required										
5	Theory, Formula, Principle, Concept	© in the reflect test m surfac test m discon will re back s back s base c the dis	Ultrasonic flaw detector is a device, which is used to detect internal discontinuities the material by nondestructive means. It makes use of phenomenon of back flection(echo) of waves by surfaces. When ultrasonic waves are made to pass through the st material, portion of the material, portion of the sound is immediately reflected form the rface at which they enter as a very large echo. Part of the sound will continue on into the st material, until it is partially reflected from the back surface as a sound echo. If there is a scontinuity in the material, a portion of sound will be reflected from the discontinuity and ill return to the receiver as a separate echo between the echoes received from the front and ack surface. The signals received are shown on the cathode ray tube, which also as a time use connected to it, so that the position of the signal on the screen gives an indication of e distance between the crystal generator and the surface from which the echo originates								
6	Procedure, Program, Activity, Algorithm, Pseudo Code	0 0 0 0 desire 0 0 0 relativ	 distance between the crystal generator and the surface from which the echo originates. Step 1 :Clean the surface of the test rest piece. Step 2:Place the probe against the surface of test piece using thin oil film. Step 3: Switch on the power supply of the ultrasonic wave generator. Step 4: Adjust the number of cycle of transmitting and receiving the signals to the esired value. Step 5: Select the segment of tine, which contain the echo pips. Step 6:Observe the echo from the cavity if any on the CRT and measure the 								
7	Block, Circuit, Model Diagram, Reaction		1	1	Pulser/	Receiver					
	Equation, Expected Graph			Initial Pulse Crack Ech chack bch	Surface 0 8 10 42	Transol Transol	loer				
8	Observation Table,										
	Look-up Table,										
	Output										
9	Sample Calculations										
10	Graphs, Outputs										
11	Results & Analysis										
12	Application Areas	NDT	methods is to	find discontin	uities in the ma	aterial					
13	Remarks										
14	Faculty Signature with Date										

Experiment 4 : Hardness Test (Brinell Hardness Test)

-	Experiment No.:	1	Marks		Date	Date				
					Planned	Conducted				
1	Title	Brine	ll Hardness tes	t						
2	Course Outcomes	Analy	ze the material	l						
3	Aim	To de	termine the bri	nell hardness r	umber of given s	specimen				
4	Material / Equipment	Hardr	less testing ma	chine, specime	ns & brinell mici	roscope				
	Required									
5	Theory, Formula,	0	Hardness is	s usually defin	ed as the resista	nce to permanent indentation. Hardne	ss			
	Principle, Concept	test co	consists of measuring the resistance to plastic deformation of layers of metal near the							
		surfac	e of the spec	imen. In the	process of hard	lness determination when the metal	is			

LABORATORY PLAN - CAY 2019-20

		indented by a selastic deformation of the deformati	ented by a special tip(steel ball), the tip first overcomes the resistance of the metal to tic deformation and then a small amount of plastic deformation. Upon deeper entation of the tip, it overcomes large plastic deformation. This fact enables relation to be blished between the hardness and ultimate tensile strength of ductile metals. $\mathbf{BHN} = \frac{\mathbf{F}}{\frac{\mathbf{F}}{2}\mathbf{D} \cdot (\mathbf{D} - \sqrt{\mathbf{D}^2 - \mathbf{D}_1^2})}$											
		Where, F= loa	d in køf. D is the	diameter of the ball in	mm. D: is the	diameter of the								
		impression in m	im		, 21 15 414									
6	Procedure, Program,	C Step 1	Place the specime	n to be tested on the anvi	1									
	Activity, Algorithm,	C Step 2	Step 2: Raise the anvil by steel screw operated by the large hand wheel Step 3: Make the contact between the specimen and the ball indentor by turning the											
	Pseudo Code	• Step 3	: Make the contact	between the specimen an	d the ball indent	or by turning the								
		1 D Step 4	· Apply the load by	v numping the oil into the	e main cylinder	which forces the								
		main piston dov	vnwards and presse	es the ball into the specim	en.									
		• Step 5	When the desired	l load is applied, the ba	lance weight of	n the top of the								
		machine is lifte	d by action of smal	l piston, to avoid overloa	d to the ball.	\								
		• Step 6	:After applying the	e load on the ball for pa	rticular time(30)	sec), remove the								
7	Block Circuit Model	ioau anu measu				scope.								
	Diagram, Reaction			Brinell Hardness Test										
	Equation, Expected			Indenter diameter										
	Graph			+ <u>p.</u>										
				Indentation diameter www.substech.com										
8	Observation Table,				1									
	Look-up Table,	Material	Load F kgf	Diameter of	BHN in	Avg.BHN								
	Output			indentation on the	kgf/mm ²									
				specimen (d) in										
				mm										
		aluminum		1)										
				2)										
				3)										
		Copper		1)										
				2)										
				3)										
		Mild stell		1)										
		wind sten		$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$										
				$\begin{pmatrix} 2 \\ 3 \end{pmatrix}$										
0	Sample Calculations			~/										
10	Graphs, Outputs													
11	Results & Analysis													
12	Application Areas	measuring the r	netal hardness											
13	Remarks													
14	Faculty Signature													
	with Date													

Experiment 4.1: Hardness Test (Rockwell Hardness Test)

-	Experiment No.:	1	Marks		Date Planned	Date Conducted	
1	Title	Rock	well hardness	test	1 1011100	conducted	

	Course Outcomes	Analyze the	material											
3	Aim	To find the F	Rockwell hardness numb	er of the given spe	ecimen									
4	Material / Equipment	C Roc	ckwell hardness tester.											
	Required	Cor	Cone diamond indentor (120 0 included angle) 'C' scale. Ball indentor (1/16" dia. Hardened steel ball) for 'B' scale.											
		● Bal ● Har	Ball indentor (1/16" dia. Hardened steel ball) for 'B' scale. Hardness testing specimen. Standard hardness test block (for B& C scales)											
		© Star	Hardness testing specimen. Standard hardness test block. (for B& C scales). Hardness is a material characteristic which can be defined as resistance to											
5	Theory, Formula,	🛛 Har	dness is a material c	haracteristic whic	h can be defined	as resistance to								
	Principle, Concept	deformation	mation (penetration, wear, compression etc.) In Rockwell hardness test, a standard load d on type of material) is applied through a standard indentor (cone or ball) for a											
		specified du	ed on type of material) is applied through a standard indentor (cone or ball) for a ified duration, on the material & depth of impression / indentation is directly measured											
		and read as h	read as hardness number on a dial gauge (1) indentation is directly measured											
		_												
6	Procedure, Program,	• Stej	p1: Keep the loading a	nd unloading lever	at position "A" w	which is unloading								
	Pseudo Code	\mathbf{D} Ster	p 2: Select the suitable in	dentor & weights	according to the sc	ale.								
		• Step	p 3: Place the specimen	on testing table an	vil.									
		C Stej	p 4: Turn the hand whe	el to raise a job u	ntil it makes contac	ct with indentor &								
		continue turi	ning till the longer point	the small pointer	e makes 2 1/2 rotat reaches the red s	not at 3" this is								
		automatic ze	tro setting dial gauge.	the small pointer	reaches the rea s	pot at "5°, tills is								
		O Step	p 5: Turn the lever posit	ion "A" to "B" i.e	e. from unloading to	o loading position.								
		So that the to	otal load will act.	cintar of the dial	anna maabaa ata	adv position take								
		back the leve	er to the unloading posit	ionA". [Avoid su	dden release at the	lever]								
		O Stej	p 7: Now note down the	reading in the las	t dial indicator by	notifying the large								
		pointer												
		• Stej	p 8: Turn back the hand v p 9: Similarly repeat the	wheel and remove	the job. for different trials	and for different								
		metals.	p 9. Shinariy Tepear u	ie step nom 1-9	for unrefert triars	and for different								
7	Block, Circuit, Model		Α	B Minor load F0	с									
	Equation Expected		A B C Minor load F0 Minor load F0 Minor load F0											
	Equation, Expected		plus Numericau Po Major load F1 – Total load F											
	Graph			plus Major load F1 – Total lo	Minor load F	0								
	Graph			plus Major load F1 - Total lo	Minor load F	, 								
	Graph			plus Major load F1 - Total lo	Minor Icad F	, 7								
	Graph	Zero		plus Major load F1 - Total lo	Minor Ioad F	, 								
8	Graph Observation Table,	Zero	Reference line	plus Major load F1 - Total lo	Minor Icad F	°								
8	Graph Observation Table, Look-up Table, Output	Zero Type of	Reference line	Ball indenter	Minor Icad F	P Avg RHN								
8	Observation Table, Look-up Table, Output	Zero Type of material	Reference line	Ball indenter dia in mm	Minor Icad F	Avg RHN								
8	Observation Table, Look-up Table, Output	Type of material	Reference line	Ball indenter dia in mm	Rockwell hardness number	P Avg RHN								
8	Graph Observation Table, Look-up Table, Output	Type of material aluminu	Reference line	Ball indenter dia in mm	Minor Icad F	Avg RHN								
8	Graph Observation Table, Look-up Table, Output	Type of material aluminu m	Reference line	Ball indenter dia in mm	Minor Icad F Add F Ad	Avg RHN								
8	Graph Observation Table, Look-up Table, Output	Type of material aluminu m	Reference line	Ball indenter dia in mm	Minor Icad F Minor Icad F e e ket F e ket F e ket F e ket F ket F k	P Avg RHN								
8	Graph Observation Table, Look-up Table, Output	Type of material aluminu m Copper	Reference line	Ball indenter dia in mm	Minor Icad F Add F Ad	Avg RHN								
8	Graph Observation Table, Look-up Table, Output	Type of material aluminu m Copper	Reference line	Ball indenter dia in mm	Minor Icad F Minor Icad F Rockwell hardness number 1) 2) 3) 1) 2)	P Avg RHN								
8	Graph Observation Table, Look-up Table, Output	Type of material aluminu m Copper	Reference line	Ball indenter dia in mm	Minor Icad F Add F Rockwell hardness number 1) 2) 3) 1) 2) 3)	Avg RHN								
8	Graph Observation Table, Look-up Table, Output	Type of material aluminu m Copper	Reference line	Ball indenter dia in mm	Minor Icad F Add F Ad	Avg RHN								
8	Observation Table, Look-up Table, Output	Type of material aluminu m Copper brass	Reference line	Ball indenter dia in mm	Minor Icad F Add F Add F Control Control Co	Avg RHN								
8	Observation Table, Look-up Table, Output	Type of material aluminu m Copper brass	Reference line	Ball indenter dia in mm	Minor Icad F Add F Ad	Avg RHN								
8	Observation Table, Look-up Table, Output	Type of material aluminu m Copper brass	Load in Kgf	Ball indenter dia in mm	Minor Icad F Add F Ad	Avg RHN								
8 9 10	Graph Observation Table, Look-up Table, Output Sample Calculations Graphs, Outputs	Type of material aluminu m Copper brass	Load in Kgf	Ball indenter dia in mm	Minor Icad F Add F Ad	Avg RHN								
8 9 10	Graph Observation Table, Look-up Table, Output Sample Calculations Graphs, Outputs Results & Analysis	Type of material aluminu m Copper brass	Reference line	Ball indenter dia in mm	Minor Icad F and F e e c e c c c c c c c c c c c c c	Avg RHN								
8 9 10 11 12	Graph Observation Table, Look-up Table, Output Sample Calculations Graphs, Outputs Results & Analysis Application Areas	Type of material aluminu m Copper brass	Reference line	Ball indenter dia in mm	Minor Icad F and F e e c c c c c c c c c c c c c	Avg RHN								

Experiment 5 : Tensile Test

-	Experiment No.:	1	Marks		Date Planned		Date Conducted				
1	Title	Ter	nsile test		<u>I</u>						
2	Course Outcomes	Mec	chanical behav	ior							
3	Aim	То	conduct t	ensile test	in ductile	material a	nd to det	ermine the			
		fall	owing: i)	[]]timate te	nsile stress	(UTS) ii)	Vield stre	(VS) iii)			
			oking stra	(1)	Flongation	(010) (10)	modulus	(\mathbf{F}) v; $0/$			
		Re	eduction in area								
4	Material / Equipment	0	Universa	testing machi	ne.						
	Required	0	Tensile te	st specimens.							
	-	0	Extensor	neter dial gaug	ge.						
		0	Steel scal	e, slide caliper	rs & micromete	er.					
		0	Support b	olocks.							
5	Theory, Formula,	0	The tens	ile test is wi	dely used to	provide basic	design inform	nation on the			
	Principle, Concept	stre	ngth of materi	als and as acc	eptance test for	or specification	n of materials.	In the tensile			
		test,	a tensile spec	imen as per a	greed standard	is subjected to	continually 1	ncreasing uni-			
		axia	l tensile force	while simulta	The following	nons are made	of the constru	icted from the			
		CUR	i, eloligation i	neasurement.	The following	g parameters a	ue toulia fioi	ii suess-suaii			
6	Procedure. Program.	O	Step 1: N	leasure the in	itial diameter(a	11)and mark th	ne initial gaug	e length(I1)on			
0	Activity. Algorithm.	the s	specimen.				ie innen Bang	• 1011gen(11)011			
	Pseudo Code	0	Step 2 : I	Fix the upper e	and of the speci	imen inside the	e shackles of t	he upper cross			
		head	d and bring the	e shackle of th	e intermediate	cross head int	o contact with	bottom of the			
		spec	cimen and the	bottom end is t	fixed inside the	shackle.					
		0	Step 3:M	ount the exte	nsometer dial	gauge (L.C=0	.01mm) on th	e lower cross			
		head	d bring the inc	licator of exte	rnal dial gauge	e, elongation	scale and load	dial gauge to			
		zerc	reading .	1	. 1.6	400.1					
		₩ (001	Step 4: S	of division on	ine and for ev	Very 400 kg II	icrease, note	the elongation			
		(COL M	Step 5: N	When the load	1 unal gauge Λ 1	L.C).	r vield point	(this could be			
		obse	erved by the r	apid moveme	nt of indicator	of the extens	ometer dial g	uge)note the			
		read	ling on the ele	ongation scale	. Continue lo	ading decrease	es the area of	specimen and			
		fails	at particular l	oad . Note the	breaking load	and elongation		1			
		0	Step 6:	Remove the	fractured sp	becimen and	measure the	final gauge			
		leng	ths(I2)and fination	al diameter(d2)and observe th	ne fracture.					
		0	Step 7: F	lot a graph of	load V/s elon	gation. The re	esults are tabu	lated as given			
-		belc)W								
1	Block, Circuit, Model										
	Diagram, Keaction										
	Graph										
	Oraph										
				2							
					Sphine	-Soex Colom					
				Ø							
				Adjurable Upper	T _{tt} f -	Wedge Grips					
				Test Specimen	[-Adjustable Lover Occuberad					
					r#n 🛛	LINESS CONTRACTOR	Longator				
				Ø			/mii				
				Д	te t	/ 100					
				(nin K Y						
						L					
						Encoder Assembly					

8	Observation Table, Look-up Table, Output	Sl no	material	Initial gauge length (11)mm	Initial Dia (d1)mm	Final Gauge length (12)mm	Final dia (d2)mm	Origina lCross section area mm 2	Final area mm 2	
9	Sample Calculations	© © © © © © © © © © © © © © © © © © ©	initial diameter of specimen = d1 mm Final diameter of specimen = d2 mm Initial gauge length = L1 mm Final gauge length = L2 mm Initial area of specimen(A1) = IId 12 /4 mm 2 Final area of specimen (A2) = IId 22 /4 mm 2 %Elongation = (L 2 -L 1) x 100 L 1 %Reduction in area = A1-A2 x 100 A1 Yield stress = Yield load /original area of cross section, N/mm 2 Ultimate tensile stress = maximum load /original area of cross section (UTS) m 2							
10	Graphs, Outputs		y-axis Slope=Modulus of elasticity							
11	Results & Analysis	0			Suam X-	alis				
12	Application Areas	© tension	Universal t	esting ma	chine is c	lesigned f	for testing	the mate	rial under	
13	Remarks									
14	Faculty Signature with									
	Date									

Experiment 5.2 : compression strength test

-	Experiment No.:	1	Marks	Date	Date					
				Planned	Conducted					
1	Title Compression strength test									
2	Course Outcomes	Mec	lechanical behavior							
3	Aim	To s	o study the behavior of the given material under Compressive load and to determine the							
		follc	ollowing:							
		1)	1) Modulus of elasticity							
		2)	Maximur	n Compressive strength or ultima	te stress					
		3)	Percentag	ge Decrease in length						
		4)	Percentag	ge Increase in area						
4	Material / Equipment	0	Universa	l testing machine.						
	Required	0	Compres	sion test specimens.						
		0	Extensometer dial gauge.							
		0	Steel scal	le, slide calipers & micrometer.						
		0	Support b	plocks.						

5	Theory, Formula, Principle, Concept	The compression test is just opposite to tension test, with regard to direction. However, there are certain practical difficulties which may induce error in this test. They are: Difficulty in applying truly axial load. There is always a tendency of the specimen to bend in addition to Contraction. To avoid these errors, usually the specimen for this test shall be short in length (not more than 2)							
		time the diame	ter)						
6	Procedure, Program,	• Step1:	: Fix the lower	and upper cor	mpression plate	e above the bot	tom cross head		
	Activity, Algorithm,	and below the i	intermediate cro	oss head.	<11> 11 • 1.	c : 4	1		
	Pseudo Code	W Step2:	Measure the in	nitial diameter	(d1) and height	t of specimen (f	11) plata and bring		
		the top of spec	timen in contac	t with the top	plate by movi	ng the intermed	liate cross head		
		downwards		e with the top	place by movin	ig the intermet	nuce eross neud		
		• Step 4	4: Mount the c	ompression di	al gauge on th	ne lower cross	head bring the		
		indicator to zer	ю.						
		W Bring	the indicator of	load dial gaug	ge also to zero	for MS and 20	0 kg for brittle		
		w Step : material like ca	ast iron and rec	cond the compr	vais of 400 kg ression dial gai	for MS and 20 use reading(No	of division on		
		dial gauge XLC	C).	ord the compr	ession diar gat		. of division on		
		• Step 6	5:The experime	ent is continue	d till the speci	men attains a l	barrel shape on		
		reaching max l	oad for ductile	metals or fractu	ure for brittle n	naterials.			
		C Step 7	: Measure the f	inal Dia d2 and	d final height h	2 for ductile me	etals.		
		• Step a • Step	9. Plot a gran	h of stress y	s ionows. v/s strain Ca	lculate Young	's Modulus in		
		compression (f	or ductile mater	rials and failure	e compressive s	stress for brittle	materials).		
7	Block, Circuit, Model			,	ſ		amational		
	Diagram, Reaction				1				
	Equation, Expected	_							
	Orapii	stress							
		A dd		<u> </u>	($\left(\right) \right)$	(
		sive lo			(a)				
		Jubres							
		elastic	plastic deformation	ression(or strain)	\square				
		deformation			(d)	(e)	(1)		
8	Observation Table,		[1			
	Look-up Table, Output	Sl no	Load (F) in	Deformati	Stress	Strain	Young's		
			KN	on mm	KN/mm ²		modulus		
							KN/mm ²		
0		r ·.· 1 1·	<u> </u>	11					
9	Sample Calculations	Initial diameter	of specimen =	d1 mm					
		Initial height of	f specimen = h^{1}	mm					
		Final height of	specimen = h^2	mm					
		initial area of s	pecimen (A1)=	пd 12					
				mm 2					
		F :	(12)	4					
		r inai area of sp	becimen (A2)=	11 d 22	nm)				
				r Д	11111 2				
		% increase in a	rea = Compres	\vec{s} sion stress = A	2- A1				
			1		x 100				
		0/1	. 1 . 1 . 1 .		A1				
		% decrease in l	height =h1 - h2						
L		1							

		h1 Compression strain=load up-to elastic point / A1 Compression strain = σ h/h1 σ h = h1-h2 Young's modulus in compression=compressive stress / compressive strain N/mm 2 (slope of load v/s compression graph).
		Max compressive stress (for ductile materials) = Max compression load /
		Original area of cross section = N/mm 2
		Max compressive stress at failure (for brittle material) = Failure load / $A1=N/mm 2$
10	G 1 0 1 1	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	• Universal testing machine is designed for testing the material under
		compression
13	Remarks	
14	Faculty Signature with	
	Date	

Experiment 5.3: Bending test

-	Experiment No.:	1	Marks		Date		Date Conducted				
1	Title				Planned		Conducted				
1		Bendi	Bending test								
2	Course Outcomes	Mechan	ical behav	vior							
3	Aim	To stud	y the beha	avior of wood	specimen for	bending load	and to determ	ine the elastic			
		streng5t	h modulu	s of elasticity &	toughness						
4	Material / Equipment Required	UTM, s	cale,dial g	guage							
5	Theory, Formula, Principle, Concept	•									
6	Procedure, Program, Activity, Algorithm, Psoudo Codo	00	Step 1 : 0 Step 2 :Se	Observe the spe elect a suitable	ecimen and me span.	asure its cross	sectional dime	ensions.			
	r seudo Code	W distance	Step 3 :IVI	Step 3 :Mark the mid span point and two point loading locations at 1/3 span							
		Ø	Step 4 :M	Step 4 Mark the cross section lines at these locations							
		Ō	Step 5 :Se	elect a proper r	ange of loadin	g (i.e. 0 to 4 to	nnes)				
		0	Step4: Move the adjustable blocks and fix them at positions corresponding to								
		selected	span.								
			.1								
7	Block, Circuit, Model	l									
	Diagram, Reaction	L									
	Equation, Expected	l									
	Graph										
8	Observation Table,	,									
	Look-up Table, Output	Sl no		Load (f) in	KN	De	flection in n	ım			
9	Sample Calculations	0	Material	=							
		0	Cross see	ctional dimensi	$on = b \ge d = $	cm					
		0	Span len	gth =	mm						
		Ŵ	Moment	of inertia of the	e beam(I)=BH	3/12=	mm	4			
		0	bending	moment at yiel	d point(M _{by})=l	F _y *L/4=	KN	(-m			
		0	Elastic st	trength = M_{by}	* C/I =	KI	N-mm ²				
		0	maximur	m bending = M	$_{u} = F_{y} * L/4 = _{}$		KN/m				
		0	toughnes	$s = 2F_f Y_v/3AL$	=	KN/mm	2				

LABORATORY PLAN - CAY 2019-20

		o modules of elasticity $E = [l^3/48I]^*$ slope of straight line portion of the graph
10	Graphs, Outputs	(stress) Load (stress) Modulus Elastic limit Maximum load Flastic zone Deflection (strain)
11	Results & Analysis	Elastic strength, modulus of elasticity, toughness
12	Application Areas	\bullet The bend test is a simple and inexpensive qualitative test that can be used to
		evaluate both the ductility and soundness of a material
13	Remarks	
14	Faculty Signature with	
	Date	

Experiment 5.4 : shear strength test

-	Experiment No.:	1	Marks] Pl	Date anned		Date Conducted	
1	Title	Sh	Shear strength test						
2	Course Outcomes	Me	Mechanical behavior						
3	Aim	To	determine ultii	nate shea	ar strength	in single & do	ouble shear	for ductile ma	terial.
4	Material / Equipment	1)) UTM						
	Required	2)	2) Shear shackles for single and double shear						
		3)	Vernier /	Microme	eter				
		4)	Shear sp	ecimen o	f MS, Bras	s & Aluminiu	ım.		
5	Theory, Formula,	0	Shear str	ess is ca	used by a t	force which a	cts paralle	l to an area of	cross section
	Principle, Concept	and	tends to produ	uce slidin	ig of one po	ortion part and	other portion	on. If the force	in resisted by
		fail	ure through a	single ar	ea then the	e material is s	said to be	in single shear	. If two areas
		resi	sts the fracture	e, then the	ematerial is	s said to be in	double she	ear.	
6	Procedure, Program,	0	Step 1:T	he diame	ter of speci	men is measu	ired using	vernier / micro	meter.
	Activity, Algorithm,	W	Step 2: 1	The speci	men is the	n inserted ins	ide approp	riate shear sha	ckles and the
	Pseudo Code	spe	cimen with sha	ackies is j	placed insi	de the shear c	enter plate		м
		9 6	Step 5:1	he entire	assembly 1	s placed on the	head is the	oss nead of UT	IVI till it malead
		e Con	tact with the t	on of the	contor plat		neau is the	ii moved down	i uni it makes
		ര	Sten 5. T	The mach	ine is starte	ed and the loa	d is annlied	l gradually	
		0	Step 5. T	he load a	t which tw	o specimen h	orakes in si	ingle shear / do	while shear is
		reco	orded from the	load dia	l gauge.	o specificit e	nuces in s	ingle shear / at	Jubie shear is
7	Block, Circuit, Model				- 88				
-	Diagram, Reaction		0.005 in	clearance I		0.005 1 1			
	Equation, Expected		0.000	X	11	0.005 in. clea	rance	2 a	
	Graph		1	62	4 17	3	XX	0/m	
	-		C		1011	6		VIX	
			4		-				
				0 0	- Specim	en		3 Specimer	n
				-	WANNING TO THE		CHONCONONY	ANANA	
			S	ingle Shea	ar Testing		Double She	ar Testing	
8	Observation Table,	51	no mai	erial '	Type of	Dia of	Fracture	Area of	Ultimate
	Look-up Table, Output	51			aboor	the	lood (f)	the	shoor
				2	shear	ine .	10au (1)	uie .	shear
						specimen	IN IN	specimen	strength
						(d) 1n		(A) in	1n 2
						mm		mm^2	N/mm ²
9	Sample Calculations	0	In single	shear, sh	ear strengt	$h = 4P/ \pi d 2$	<u>ı</u>	I	<u> </u>

Copyright ©2017. cAAS. All rights reserved.

		0	In double shear, shear strength = $2P/\pi d 2$
		0	Where $d = Dia$ of specimen in mm P= Failure load in N.
10	Graphs, Outputs	0	
		0	
11	Results & Analysis	0)
12	Application Areas	0	To determine the behavior a material
13	Remarks		
14	Faculty Signature with	ı	
	Date		

Experiment 6 : Torsion test

-	Experiment No.:	1	Marks		Date Planned			Date ducted	
1	Title	То	rsion tost		Tanneu		Con	uuttu	
-		10		•					
2	Course Outcomes	Me	Mechanical benavior						
3	Aim	10 £-11	To determine the behavior of Mild steel when subjected to Torsion & obtain the						
4	Matarial / Equipment	1011	Torsion t	a properties: () Modulus (of rigidity (2	2) Elastic s	near streng	un
4	Poquirod	$\frac{1}{2}$	micromo	tor	5				
	Kequileu	2) 3)	k) vernier caliner & niece						
5	Theory Formula	0	A metho	d of finding th	ne shear pro	perties of a	material i	s by the us	se of torsion
5	Principle. Concept	test	. Torsional she	ar stress on ci	cular cross	section varie	es from zer	o at the ax	is of twist to
	r , r , r ,	a m	naximum at the	extreme fibre	3				
6	Procedure, Program,	0	Step 1:M	leasure the dia	meter d of th	ne specimen	at several	sections m	icrometer to
	Activity, Algorithm,	get	mean value.			-			
	Pseudo Code	0	Step 2: N	leasure the ga	ige length 1				
		0	Step 3: A	djust the torsi	on machine	to read zero	and then i	nsert the sp	becimen into
		two	o chucks.						
		0	Step 4: A	pply the load	at load at slo	w speed(15	rpm).		1
		w Ta	Step 5: N	Note down the	reading of w	vattmeter an	d simultan	eously calc	ulate torque
7	Plack Circuit Model	1 a			le occurs.				
	Diagram Reaction	SI	. Leng	th Diamet	Watt	Torque	No. of	No. of	$\theta = \{n+$
	Equation Expected	N	o. of	er of	meter	T= 60p	revoluti	division	(csd)
	Graph		Spec	im Specim	Readin	PW	ons on	on	π
	1		en	en/ mm	g	2πN	counter	circular	100
			1mm		C		Ν	scale	
								(CSD)	
								(CDD)	
8	Observation Table,					4			
	Look-up Table, Output								
9	Sample Calculations	0							
10	Graphs, Outputs	0							
		0							
11	Results & Analysis	0							
12	Application Areas	0	To deter	nine the behav	ior a materia	al			
13	Remarks								
14	Faculty Signature with								
	Date								

Experiment 7 : Impact test(Charpy test)

-	Experiment No.:	7	Marks	Date		Date				
				Planned		Conducted				
1	Title	In	npact test(charpy test)							
2	Course Outcomes	Im	impact strength							
3	Aim	То	determine the	impact strength of the given by C	Chapy test n	nethod				
4	Material / Equipment	t 🛈	• impact testing machine.							
	Required	0	Charpy impact testing specimen with U Groove.							

		• Vernier	scale.						
5	Theory, Formula,	, O Specim	en with U notch support	ted at both ends as a singl	e beam is broken by a				
	Principle, Concept	falling pendului	n striking the face oppo	osite to and immediately	behind the notch. The				
		energy absorbed	l by						
		specimen is dete	specimen is determined by subsequent rise of pendulum as a measure of impact strength						
		or notch toughness and expressed as Joules J(N/mm 2)							
6	Procedure, Program,	, O Step 1:	• Step 1: measure the dimension of the given specimen at full section and at the						
	Activity, Algorithm,	,notch		1 11	101				
	Pseudo Code	• Step 2:	without specimen rise the	he pendulum to its full lev	vel &release its weight				
		note down the fi	nitial reading on the grad	uated scale					
		Step 5:	release the pendulum fr	ratery for charpy test	assa it and note down				
		the final reading	on the graduated scale		ease it and note down				
		Sten 5 [·]	calculated the impact str	ength and imanct velocity	of the given material				
			• ano and ano and part of		or the ground interest and				
7	Block, Circuit, Model	Material	Angle of fall (α)	Fracture energy	Impact strength				
	Diagram, Reaction	n n n n n n n n n n n n n n n n n n n	ringle of full (u)	from apple (II) ioula	$K = 11/\Lambda = 1/mm^2$				
	Equation, Expected	11		from scale(0) jours	K = U/A J/IIIII				
	Graph								
8	Observation Table								
Ū	Look-up Table, Output	,							
9	Sample Calculations	• Area b	elow the notch of the spe	cimen (A) =mm	2				
		• weigth	of the pendulum $(W) =$	Kg					
		lenth o	f the pendulum (r)	.Deg.					
		• Angle	of fall (α)=Deg						
		• angle o	of Rise (β)=Deg						
10	Graphs, Outputs								
11	Results & Analysis								
12	Application Areas	determining the	amount of forces that are	e absorbed by materials wl	nen it reaches the point				
L		of fracture.							
13	Remarks								
14	Faculty Signature with	1							
	Date								

Experiment 7.1 : Impact test(Izod test)

-	Experiment No.:	7	Marks		Date		Dat	te	
					Planne	ed	Condu	icted	
1	Title	Im	pact test(]	zod test)					
2	Course Outcomes	Imp	act strength						
3	Aim	To	o determine the impact strength of the given by Chapy test method						
4	Material / Equipment	0	impact testing machine.						
	Required	0	Izod impact test specimen with V groove.						
		0	Vernier scale.						
5	Theory, Formula,	0	Specimen with U notch supported at both ends as a single beam is broken by a						
	Principle, Concept	falli	falling pendulum striking the face opposite to and immediately behind the notch. The						
		ene	rgy absorbed	by					
		spe	cimen is dete	rmined by subse	equent ris	se of pendulum as a	a measur	e of in	npact strength
		or n	otch toughne	ss and expressed	d as Joule	es J(N/mm 2)			
6	Procedure, Program,	0	Step 1:	measure the dir	nension of	of the given specin	nen at fu	Ill secti	ion and at the
	Activity, Algorithm,	note	ch						
	Pseudo Code	0	Step 2:	without specime	en rise th	e pendulum to its f	full level	&rele	ase its weight
		note	e down the in	itial reading on	the gradu	ated scale			
		0	Step 3:	place the specim	nen accur	ately for izodtest			_
		0	Step 4:	release the pend	dulum fro	om the initial level	& relea	ise it a	nd note down
		the	final reading	on the graduate	d scale				
		W	• Step 5: calculated the impact strength and imapct velocity of the given material						
7	Block, Circuit, Model Diagram, Reaction	M	aterial	Angle of fall (o	ι)	Fracture energy	I	mpact	t strength

	Equation, Expected Graph			from scale(U) jouls	$K = U/A J/mm^2$
8	Observation Table, Look-up Table, Output				
9	Sample Calculations	Area below	ow the notch of the spec	$rimen(A) = \dots mm^2$	2
		• weigth of	f the pendulum $(W) =$	Kg	
		lenth of t	the pendulum (r)	.Deg.	
		O Angle of	fall (α)=Deg		
		o angle of	Rise (β)=Deg		
10	Graphs, Outputs				
11	Results & Analysis				
12	Application Areas	determining the a	mount of forces that are	absorbed by materials wh	nen it reaches the point
		of fracture.			
13	Remarks				
14	Faculty Signature with				
	Date				

Experiment 8 : wear studies

-	Experiment No.:	8	Marks		Date		Date					
1	m '1				Planned		Conducted	L				
1	little	We	Wear studies									
2	Course Outcomes	The	he predict wear rate of different material									
3	Aim	То	b determine the wear of the given specimen									
4	Material / Equipment	9	Pin on disc machine.									
	Required	0	D Electronic weighing machine.									
		0	Ultrasonic cleaning device.									
		0	Brass /A	luminum specim	en.							
		0	Hardene	d disc								
5	Theory, Formula,	0	D Wear is the progressive loss of substance from the operating surface. The usual									
	Principle, Concept	classification of types of wear is abrasive wear ; most examples in practice are a										
		combination of two or more of these. "Abrasive wear"- abrasion is virtually a cutting										
		acti	ction which may result from loose, hard particles sliding between two mating surfaces.									
		It c	t can also arise when one pair of rubbing surfaces is itself rough. The loose particles may									
		be o	lirt from the e	nvironment or we	ear debris.							
6	Procedure, Program,	0	Step 1: Clean the surface of disc and the specimen (brass, aluminum)									
	Activity, Algorithm,	Algorithm, O Step 2: Weigh the specimen accurately by using electronic weighing machine										
	Pseudo Code	ode (W1)										
		0	• Step 3:Fix the specimen (pin) on the horizontal arm and measure the track									
		rad	ius by a scale.									
		0	Step 4:sp	becimen should b	e in contact w	vith disc.						
		0	Step 5:S	witch on the mot	or and note th	e speed of the	e (rpm)on the i	ndicator.				
		• Step 6:Load the specimen and note the force.										
		Step 7:Run the motor for a specified time interval(say 15min).										
		0	Step 7:C	clean the specim	en and weig	h the same N	Note down the	e final weight				
		(W)	2). Glassian (200	1 1	1. 1. 1	6 1	· C· 1 ·					
		9	Step 8:C	alculate the total	sliding distan	ce for the spe	cified running	; time.				
		Ð	Step 9:Repeat the experiment for different rpm, load and material.									

7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	Balance Weight Pin holder							
8	Observation Table, Look-up Table, Output	Mater ial	Fricti onal Load in (N)	Load in (gm)	Speed in rpm	Time in see	W _i in gm	W _f in gm	% wt loss (W _i -W _f /w _i) 100
9	Sample Calculations								
10	Graphs, Outputs								
11	Results & Analysis								
12	Application Areas	Wear test	t is comn	nonly use	ed as a sir	nple mea	sure of w	orkability of mat	erial in service.
13	Remarks								
14	Faculty Signature with								
	Duit								

F. Content to Experiment Outcomes

1. TLPA Parameters

				-			
Expt-	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructio	Assessment
#	(Split module content into 2 parts which have	Teaching	Learning	Bloo	Action	n	Methods to
	similar concepts)	Hours	Levels for	ms'	Verbs for	Methods	Measure
			Content	Level	Learning	for	Learning
						Learning	
Α	В	С	D	E	F	G	H
1	Metallographic examination of plain carbon steel,	03	L2	L2	Summariz	Demonstr	Viva &
	tool steel, gray cast iron, brass, bronze		(Understa	(Unde	e	ate	presentation
			nd)	rstand			
)			
2	Heat treatment like annealing, normalizing,	03	L3	L3	Develop	Demonstr	Viva &
	Harding and tempering of steel		(Apply)	(Appl		ate	presentation
				y)			
3	Hardness test like Brinnel, Rockwell, Vickers	06	L3	L3	Develop	Demonstr	Viva &
	hardness		(Apply)	(Appl		ate	presentation
				y)			
4	Ultrasonic flaw detection, magnetic crack	03	L3	L3	Develop	Demonstr	Viva &
	detection		(Apply)	(Appl		ate	presentation
				y)			
5	Using U T M conduct tensile test, shear and	06	L3	L3	Develop	Demonstr	Viva &
	compression test.		(Apply)	(Appl	_	ate	presentation
				y)			

Table 1: TLPA – Example Course

6	Impact test for mild steel and CI specimen	04	L3 Apply	L3 Apply	Develop	Demonstr ate	Viva & presentation
7	Torsion test on steel bar	03	L3 Apply	L3 Apply	Develop	Demonstr ate	Viva & presentation
8	Wear characteristics of ferrous and non ferrous materials under different parameters	04	L3 Apply	L3 Apply	Develop	Demonstr ate	Viva & presentation

2. Concepts and Outcomes:

			Table 2: Con	<u>cept to Outcome – Exa</u>	imple Course	
Expt	Learning or	Identified	Final Concept	Concept Justification	CO Components	Course Outcome
- #	Outcome from	Concepts		(What all Learning	(1.Action Verb,	
	study of the	from		Happened from the	2.Knowledge,	
	Content or	Content		study of Content /	3.Condition /	Student Should be
	Syllabus			Syllabus. A short word	Methodology,	able to
				for learning or	4.Benchmark)	
				outcome)		
Α	Ι	J	K	L	М	N
1	Metallographic	Microstruc	Vicrostruc Microstructure Will be able to Action Verb :		Action Verb :	Understand the micro
	examination	ture		understand the basic	Understanding	structure of materials
				microstructure	Knowledge :	
					microsture	
2	Heat treatment	Improvem	Improvement	Will be able to	Action Verb :	Improve the material
		ent of	of properties	understand the	Analyzing	properties
		properties		properties of materials	Knowledge :properties	
3	Hardness test 1	Resistance	Resistance of	Hardness of the	Action Verb :	Analyze the material
		of material	material	material	Analyzing	
					Knowledge :resistance	
4	Ultrasonic flaw	NDT	NDT	Non destructive	Action Verb :	Explore the difference
	detection,			methods	Analyzing	NDT method
	magnetic crack				Knowledge :destructive	,
	detection				and non destructive	
5	Using U T M	Material	Material	Comparison of	Action Verb :	Predict the material
	conduct tensile	behavior	behavior	different material	Analyzing	behavior
	test, shear and			behavior	Knowledge : behavior	
	compression				of material	
	test.					
6	Impact test for	strength	strength	Strength of the	Action Verb :	Access the strength of
	mild steel and			material	Analyzing	material
	CI specimen				Knowledge : strength	
					of material	
7	Torsion test on	torsional	torsional	Strength of the	Analyzing	Predict the material
	steel bar	strength	strength	material	Knowledge : strength	behavior
					of material	
8	Wear	wear	wear	Behavior of the	Analyzing	The predict wear rate
	characteristics			material	Knowledge : wear of	of different material
	of ferrous and				the material	
	non ferrous					
	materials					

Table 2: Concept to Outcome – Example Course